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Abstract 
Developing efficient programs for distributed systems is difficult because computations must 
be efficiently distributed and managed on multiple processors. In particular, the program- 
mer must partition functions and data in an attempt to find a reasonable balance between 
parallelism and overhead. Furthermore, it is very expensive to code an algorithm only to find 
out that the implementation is not efficient. As a result, it is often necessary to determine 
and examine those characteristics of an algorithm that can be used to predict its suitability 
for a distributed computing system. 

In earlier work [7,8], we presented a framework for the study of synchronization and 
communication effects on the theoretical performance of common homogeneous algorithmic 
structures. In particular, we examined the synchronous, asynchronous, nearest-neighbor, 
and asynchronous master-slave structures in terms of expected execution times. In this pa- 
per, we examine the effects of synchronization and communication on the expected execution 
times of heterogeneous algorithmic structures. Specifically, we consider structures containing 
two different types of tasks, where the execution times of the tasks follow one of two different 
uniform distributions or one of two different normal distributions. Furthermore, we compare 
the expected execution times of the heterogeneous algorithmic structures with times for cor- 
responding homogeneous structures. Finally, we develop bounds for the expected execution 
times of the heterogeneous structures and compare those bounds to simulated execution 

times. 

"This work was supported by the National Aeronautics and Space Administration under NASA Contract 
NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and 
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. 



1 Introduction 

It is well known that interprocessor communication can be costly, particularly in distributed 
systems where the distance between nodes is large. High interprocessor communication is 
the cause of the "saturation effect", which occurs when allocating additional processors to a 
problem causes a decrease in performance [6]. 

Communication overhead is often due to task synchronization, which is required to ensure 
that task precedence constraints are fulfilled. Synchronization is a property of an algorithm 
or problem. If one process finishes earlier than its synchronization partners, it must sit idle 
until the others finish, which is why synchronization has been called "a major cause of wasted 
computing cycles and of diminished performance in parallel computing" [3]. 

Many problems for parallel and distributed systems have two or more potential imple- 
mentations, so it is particularly important to consider synchronization and communication 
when evaluating which implementation will give the best performance. This research ex- 
amines the effects of synchronization and communication on execution time for common 
algorithmic structures. In particular, we will consider heterogeneous structures in which the 
execution times of the tasks follow known probability distributions and communication times 
are zero or constant. 

2 Background 

2.1 Algorithmic Structures 

It is known that many algorithms possess an identifiable structure and that many algorithms 
share communication patterns [1]. Figure 1 gives sample precedence graphs for four parallel 
structures commonly found in algorithms: asynchronous, nearest-neighbor, synchronous, 
and asynchronous master-slave. In each of these structures, arcs from one node to another 
indicate that the first node (task) must complete execution before the second node (task) 
can begin execution. Notice that tasks in a row can execute concurrently if there are enough 
processors. Furthermore, notice that the asynchronous master-slave structure is related to 
the asynchronous structure in that there is no explicit synchronization between the slave 
processes. These and other algorithmic structures are discussed in more detail in [2,5,7]. 

2.2 Analysis of Algorithmic Structures with Homogeneous Tasks 

In [7,8], we examined the effects of synchronization and communication on execution times 
for different categories of homogeneous algorithmic structures. In particular, we analyzed 
the synchronous, asynchronous, nearest-neighbor, and asynchronous master-slave structures 
under the assumption that all of the tasks had execution times that were independent and 
identically distributed (i.i.d.) according to the uniform u(0,1) distribution or the normal 
n(|,^) distribution. 

At first, we considered the effect of synchronization alone by assuming that communica- 
tion times were zero. For very small problems, the results presented in [7,8] demonstrated 
that the algorithmic structure used makes little difference in the expected execution time. 
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Figure 1: Examples of Algorithmic Structures 

However, the results demonstrated that for large problems the cost of synchronization can 
be quite significant. In particular, the synchronous structure required the longest execution 
times while the nearest-neighbor structure had execution times that were only slightly better. 
As expected, the asynchronous structure gave the best execution times.1 

Next, we analyzed the structures in Figure 1 under the assumption that communication 
times were constant and non-zero. By considering the possible combinations for commu- 
nication and computation, we developed bounds for the expected execution time for each 
of these structures and compared the bounds with simulated executions. The simulation 
results showed that the nearest-neighbor structure suffered little performance degradation 
as the amount of work and number of processors were increased. The synchronous and 
asynchronous master-slave structures both showed performance degradation as the amount 
of work and number of processors were increased. The asynchronous master-slave structure 

i\Vhen communication times are zero and the master's work is negligible, the asynchronous master-slave 
structure is the same as the asynchronous structure. Thus, the discussion of the cost of synchronization 
alone does not mention the asynchronous master-slave structure. 



showed better performance with small numbers of processors and smaller communication 
times, while the synchronous structure showed better performance with large numbers of 
processors and larger communication times. However, the nearest-neighbor structure was 
better than all but the asynchronous structure. 

3 Algorithmic Structures with Heterogeneous Tasks 

Our earlier analysis assumed that all of the tasks in the structure were identically distributed 
and that the tasks were executed on n identical processors, where n was the maximum 
width of the structure. This work examines the effect on performance when either one of 
these assumptions is relaxed. Notice that we still require that the task execution times be 
independent. 

Suppose we have a program composed of i.i.d. tasks that currently runs on n identical 
workstations. Next, suppose that m of these workstations (m < n) are replaced with work- 
stations that are identical in all respects except for clock speed. In particular, suppose that 
the new workstations have a faster clock speed. What is the expected execution time now 
that the system has changed? In this case, the capability of each machine is the same, but 
some machines will complete the tasks earlier than the others due to the difference in clock 
speed. The effect of this change is that the tasks on the faster machines now have task 
times that follow a different distribution than the tasks on the slower machines. Thus, we 
can model this new system as a system of n identical processors with task times that follow 
two different distributions.2 The result is an algorithmic structure with heterogeneous task 
times. 

Similarly, consider a program in which two different types of tasks need to be executed 
concurrently on n workstations. It is possible that we have two different types of workstations 
such that the execution times are identically distributed when the tasks are appropriately 
matched to the capabilities of the workstations. If so, the system can be modeled using 
an algorithmic structure with homogeneous task times. However, it is more likely that the 
resulting task times will not be identically distributed, so the system should be modeled 
using an algorithmic structure with heterogeneous task times.3 Notice that the number of 
task distributions for the structure will depend on the homogeneity or heterogeneity of the 
n workstations. If the n workstations are identical, the heterogeneous structure will have 
tasks from two different distributions. If not, the algorithmic structure will have tasks from 
two or more distributions. 

4 Analysis of Synchronization 

In this section, we will consider the effects of synchronization on execution time for algorith- 
mic structures with heterogeneous tasks. Our results are based on the following assumptions: 

2In this example, the distributions will be of the same type (uniform, normal, etc.) but will have different 
means and variances. 

3In this example, the distributions could be of different types and have different means and variances. 



• Each task in the structure has an execution time that is independent and distributed 
according to one of two known distributions, where the two distributions are of the 
same type (e.g. both uniform or both normal) but have different means and variances. 

• Communication between tasks requires zero units of time.4 

• For a precedence graph of width n (i.e. the graph contains up to n tasks that may be 
executed concurrently), there are n identical processors which may be used to execute 
the algorithmic structure. 

Following our work in [7,8], we are using the uniform and normal distributions for task 
execution times because they are "appropriate for many applications" [4]. 

4.1    Uniform Distribution 

Consider a random variable X from the uniform distribution (0, a) (i.e. uniform on the 
interval (0,a))5. The probability density function (pdf) f(x) and cumulative distribution 

function (cdf) F{x) are given by: 

/(*) 

1 
a 

I o, 

0 < x < a 

otherwise 

/X 

f(z) dz 
-oo 

o, 
X 

a 

1, 

x<0 

0 < x < a 

x > a. 

The expected value E(X) of X is computed as 

/•oo ra 1 a 
E(X)=        x-f{x)dx=      -xdx = -. 

J-oo Jo a z 

Synchronous Structure 

Consider the synchronous structure in Figure lc. Notice that tasks in one level must synchro- 
nize before any task proceeds to the next level. As discussed in [7,8], the overall execution 
time for this structure is given by a sum of max terms, where each term is the maximum of 
the execution times for a particular iteration. 

Suppose we have n random variables, where m of the variables (Xit 1 < i < m) are 
distributed uniformly on (0, a) and n-m of the variables (!}, 1 < j < n - m) are distributed 
uniformly on (0, l).6 Assuming that the variables are all independent, what is the expected 
value of Z = max(Xi, X2,..., Xm, ii, Y2,..., rn_m)? Notice that Z is the execution time 
for an iteration of the synchronous structure in which the Xt and Yj are execution times of 
the concurrent tasks. Furthermore, a can be considered to be a scaling factor to account for 
the increased "speed" of the processors corresponding to the X{ tasks. 

4 This assumption will be removed in the analysis in Section 5. 
5We could have easily picked a distribution uniform on the interval (c,d), but the equations are simpler 

if we normalize to the interval (0, a). 
6It is straightforward to generalize this to any m variables from it(0, a) and n-m variables from u(0, b), 

where 0 < a < b. For simplicity, we chose u(0,o) and w(0,1), where 0 < a < 1. 



We can determine the expected value E(Z) by finding the distribution function G(z) and 
taking the derivative to obtain the density function g(z). It can be shown that 

G(z) = Pr (Z < z) = < .a, 
n—m 

which leads to 
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The expected value E(Z) is computed as follows: 
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Notice that when n is large or a is very small, 
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In [7,8], we showed that the expected value for the maximum of n i.i.d. n(0,1) variables 

n 
E(Yn) = 

n + 1 
(5) 

Comparing Equations 4 and 5, we see that Equation 4 is significant because it tells us that 
the expected execution time for n heterogeneous tasks (where n-m tasks are u(0,1) and m 
are «(0, o), where 0 < a < 1) is approximately the same as the expected execution time for 
n-m homogeneous tasks (where all are «(0,1)). Intuitively, this result is understandable 
since the m tasks from (0,a) will generally be shorter that the n-m tasks from (0,1) and 
hence, will have minimal effect on the maximum value. 

For a synchronous structure with p identical levels, the expected execution time E(synch nm) 
is given by 

£(synchn;J=p-£(Z)=p( 
n — m 

n — m + 1 
1 + a(n_m+1) (n-m + l)(n) 

(n — m)(n + 1) 
(6) 



When n is large or a is very small, we can use a simpler approximation for E(synch njm). 

^(synch„)J«p(^^T) (7) 

Asynchronous Structure 

Analysis of the synchronous structure was fairly straightforward because tasks in one level 
must synchronize before any task proceeds to the next level. For the asynchronous structure 
in Figure la, the analysis is more difficult because of the lack of synchronization. 

Figure la shows an asynchronous structure that has four streams of execution, each of 
which contains three tasks in series. The execution time of a single stream depends on 
the sum of three tasks, while the execution time of the entire structure depends on the 
maximum of four sums. In [7,8], we discussed how the calculation of the expected value of a 
maximum of n i.i.d. variables requires knowledge of the pdf for the variables. The problem 
with analyzing the asynchronous structure is that it is difficult to determine the pdf for a 
sum of random variables. For example, the pdf for the sum of just three u(0, 1) variables is 

given by: 

'4(|*3)3(H=i^U> °<^<1 

g(x) = \  *(=£ + &■ -f + |)3(-z2+3z-§),      1<*<2 (8) 

4(^-f+ f-l)3(^-3x + |), 2<*<3. 

Notice that Equation 8 is not a simple function of the underlying u(0,1) distribution. In 
practice, algorithms consist of many levels of tasks, and the exact computation of the un- 
derlying distribution of the sum can be tedious. 

In [7], we mentioned that the normal distribution can be used to approximate the sum of k 
tasks, where k is large. We also demonstrated that standard tables can be used to determine 
the expected value for the maximum of n i.i.d. variables that are normally distributed. 
Thus, we were able to obtain close approximations for the expected execution time of the 
asynchronous structure. For the current work, we are not aware of any standard tables 
that can be used to determine the expected value of the maximum of variables from two or 
more normal distributions. Thus, we will use simulation to determine the behavior of the 
asynchronous structure with heterogeneous tasks. 

Before performing the simulation, it is useful to anticipate what the results will be. In the 
analysis of the synchronous structure, we observed that the expected value for a combination 
of variables from two different uniform distributions with the same lower bound depends 
primarily on the variables from the distribution with the larger mean. This behavior was 
due to the fact that the variables from the "smaller" distribution will have little effect on 
the maximum value. With the asynchronous structure, we would expect the same behavior, 
particularly since the "faster" processors will likely race ahead of the "slower" ones. 



Nearest-Neighbor Structure 

Figure lb shows a nearest-neighbor structure in which each task must synchronize with one 
or two neighbor tasks. In [7,8], we discussed how analytical methods cannot be used to 
determine the expected value of the nearest-neighbor structure because tasks in each level of 
the nearest-neighbor structure cannot be isolated such that the final result is a sum of max 
terms or the max of identical and independent random variables. Thus, simulation was used 
to determine the behavior of the homogeneous nearest-neighbor structure. In Section 4.3, 
we will present simulation results that demonstrate how the expected execution time of the 
nearest-neighbor structure is affected by the presence of heterogeneous tasks. 

4.2    Normal Distribution 

As noted in [4], it is often reasonable to assume that tasks in a program have execution times 
that follow a normal distribution n(n, a2), where \t, is the mean and a2 is the variance. The 
normal distribution n(/x, a2) has a pdf given by: 

m 1 

aV2n 
exp 

(x - »? 
2a2 -00 < X < CO. (9) 

In Section 4.1, we used the simple pdf of the uniform distribution to derive an equation for 
the expected execution time of the heterogeneous synchronous structure. With the normal 
distribution, a similar approach will not work because the pdf does not have an antiderivative. 
Thus, simulation must be used to examine all of the heterogeneous structures based on the 
normal distribution, just as it is needed for the asynchronous and nearest-neighbor structures 
based on the uniform distribution. 

4.3    Discussion of Results 

In this section, we present simulation results for the heterogeneous asynchronous, syn- 
chronous, and nearest-neighbor structures in which communication times are assumed to 
be zero. Since the uniform distribution u(0,1) has mean \ and variance ^, we examine the 
normal distribution n{\,^) so that comparisons can be made between the two distributions. 
Using the scaling factor a, 0 < a < 1, the uniform u(0,1) distribution will be paired with 
the scaled «(0, a) distribution. Similarly, the normal n(±, i) distribution will be paired with 

the scaled n(§, f|) distribution.7 Notice that u(0, a) and n(§, f|) have the same mean but 
different variances, even though the same scaling constant a is used. 

Table 1 provide simulation results8 for the heterogeneous asynchronous, synchronous, 
and nearest-neighbor structures in which tasks are drawn from the uniform u(0,1) and 
u(0,a) distributions. Table 2 provides similar results for the normal n(|, ^) and n(§, fj) 
distributions. For comparison, simulation results for the relevant homogeneous structures 
(where m = 0) are also included. 

7If Y is n(p,a2) and X = kY, X is n(kp, k2a2). 
8Results were taken to be the average of 10,000 simulated executions, where each processor executed 1000 

tasks and all of the tasks on a particular processor came from one distribution. 



Table 1: Simulation Results for Expected Execution Times of Heterogeneous 
Structures with Tasks from u(0,1) and «(0, a) Distributions and Zero 
Communication Times 

a 
Alg. 

Struct. 

(n,m) a 

(3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 

2 

Asynch 508 508 510 510 511 511 513 513 516 

Synch 750 753 800 801 833 834 889 890 941 

NN 732 733 765 766 785 785 813 813 836 

2 

3 

Asynch 508 508 510 510 511 511 513 513 516 

Synch 750 760 800 804 833 838 889 891 941 

NN 732 737 765 767 785 788 813 814 836 

4 

5 

Asynch 508 508 510 510 511 511 513 513 516 

Synch 750 770 800 811 833 848 889 896 941 

NN 732 744 765 771 785 789 813 816 836 

aThe notation (n, m) refers to a structure of width n in which n-m tasks are u(0,1) and m tasks 
are u(0,a), 0 < a < 1. 

Table 2: Simulation Results for Expected Execution Times of Heterogeneous 
Structures with Tasks from n(\,±) and n(f, f|) Distributions and 
Zero Communication Times 

a 
Alg. 

Struct. 

(n,m)a 

(3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 

2 

Asynch 508 508 510 510 511 511 514 514 517 

Synch 744 747 797 798 836 837 911 912 1010 

NN 727 728 762 762 783 784 817 818 848 

2 

3 

Asynch 508 508 510 510 511 511 514 514 517 

Synch 744 754 797 802 836 844 911 917 1010 

NN 727 732 762 764 783 785 817 818 848 

4 

5 

Asynch 508 508 510 510 511 511 514 514 517 

Synch 745 766 797 811 836 860 911 937 1010 

NN 727 739 762 768 783 789 817 820 848 

"The notation (n,m) refers to a structure of width n in which n-m tasks are n(§, ^) and m 

tasks are n(§, fj), 0 < a < 1. 



For the asynchronous structure, the expected execution time for the heterogeneous (n, m) 
structure is the same as that for the homogeneous (n-m, 0) structure. This is not surprising 
since the structure's lack of synchronization allows some processors to race ahead of others. 
Notice, however, that there is very little difference between the execution times for the (n, TO) 

and (n, 0) structures. Because the asynchronous structure is relatively insensitive to increases 
in width (when the number of tasks per processor is constant), there is little to be gained by 
moving some of the work from slower processors to faster processors as long as the amount 
of work per processor is constant. Instead, performance gains may be made by allocating 
more work to the faster processors and less work to the slower processors. For example, in 
the case where a - |, each processor executing u(0, |) tasks can process on average twice as 
many tasks as a processor executing u(0,1) tasks.9 

The simulation results for the synchronous structure agree with the analytical results 
obtained from Equation 6 for the uniform distribution. When a is small or n is fairly large, the 
expected execution time for the heterogeneous (n, TO) structure is reasonably approximated 
by the homogeneous (n-^rn, 0) structure. Notice that we predicted this behavior in Equation 7. 
When a is large and n is small, the approximation is not very close, but the execution time 
for (n,m) is still closer to the time for (n-m,0) than it is to the time for (n, 0). Even 
though the approximation was based on the uniform distribution, the results for the normal 
distribution indicate that it still applies. Thus, the results indicate that the performance of 
a homogeneous synchronous structure can be improved by using TO faster processors to make 
it heterogeneous. 

Based on the results for the asynchronous and synchronous structures, we would expect 
that the nearest-neighbor (n,m) structure can be approximated by the corresponding (n- 
TO, 0) structure. The results in Table 1 and Table 2 indicate that this is true when a is small 
or n is large. Like the synchronous structure, the results for the (n, TO) nearest-neighbor 
structure are closer to those for the (n-m, 0) structure even when a is large and n is small. 
Thus, the nearest-neighbor structure also has the property that performance gains can be 
made by moving some of the tasks from slower processors to faster ones. Notice, however, 
that the gains for the nearest-neighbor structure are not as great as those for the synchronous 
structure. 

5    Analysis of Synchronization and Communication 

The previous section examined the cost of synchronization for the asynchronous, synchronous, 
and nearest-neighbor structures. The cost of synchronization alone was determined by 
assuming communication between tasks required zero units of time. This section will inves- 
tigate the execution times of these structures and the asynchronous master-slave structure 
when communication times are constant and non-zero. 

9Because of differences in variances, a stream of 2n tasks from u(0, f) will not have the same distribution 
as a stream of n tasks from u(0,1). However, the two streams will have the same expected value if n is large 
since the distribution of each stream can then be approximated by a normal distribution. 



5.1    Bounds on Execution Time 

Asynchronous Structure 

For the asynchronous structure in Figure la, communication occurs only between tasks on 
the same processor. Since communication time between tasks on the same processor is zero 
or minimal compared to communication between different processors, it is reasonable to 
assume that communication times for the purely asynchronous structure are zero. Thus, the 
overall execution time for the asynchronous structure is not affected by communication. 

Synchronous Structure 

In the synchronous structure in Figure lc, communication occurs between tasks on different 
processors and hence communication times are non-zero. Consider Figure.2, which shows a 
Gantt chart for the execution of heterogeneous tasks in the synchronous structure on four 
processors. In each iteration, communication is required to initiate execution of the tasks 
and synchronize the tasks before proceeding to the next iteration. Notice that the tasks 
have variable execution times. Assume that a processor may communicate with exactly 
one processor at a time and a processor may communicate only when it is not busy with 

computation. 

[""I = Computation [_J = Communication 

Figure 2: Gantt Chart for Synchronous Structure with Heterogeneous Tasks 

Suppose that the shortest task in an iteration comes from the scaled w(0, a) distribution10 

and the other tasks come from the u(0,1) distribution. In the first iteration, the shortest task 
is the first one to begin execution. Notice that the initial communication for the shortest 
task affects the execution time for the iteration since the longer tasks must wait to begin 
execution. In the second iteration, the same tasks are rearranged such that the shortest 
task is the last one to begin execution. Notice that the shortest task's communication and 
computation have no effect on the iteration's execution time. Specifically, the execution 
time for the second iteration depends only on the time required for the three longest tasks. 
Thus, the second iteration has an execution time that is shorter than the first iteration, even 
though the same tasks are executed in both iterations. 

Figure 2 demonstrates that the execution time for an iteration may be reduced by start- 
ing the longest tasks before the shortest tasks. When task execution times come from known 

10In the discussion that follows, it is assumed that 0 < a < 1. 

10 



distributions, the tasks with the largest means should be the first ones initiated in order to 
increase the probability of minimizing the overall execution time. However, notice from the 
third iteration that there is no guarantee that starting the longest tasks first will automati- 
cally reduce the overall execution time. In this example (which does not use the same task 
times as the first two iterations), the shortest task's final communication must be added to 
the overall execution time for the other tasks. Starting the tasks that are likely to be the 
longest at the beginning of the iteration merely presents the opportunity for reducing the 
overall execution time. Results presented later in this paper will be based on the policy that 
tasks from the distribution with the smaller mean (such as u(0,a)) will be initiated before 
tasks from the distribution with the larger mean (such as «(0,1)). 

In [7,8], we developed bounds on the expected execution time for the homogeneous 
synchronous structure in which each iteration contains n tasks (executed on n identical 
processors) and the structure contains p iterations. The expected time for the entire structure 
E(X) follows the bounds 

£(synch) + 2pC < E{X) < E(synch) + (n + l)pC, (10) 

where E (synch) is the expected execution time without communication and C is the time 
required for one communication. 

While Equation 10 was developed for the homogeneous synchronous structure, it is also 
applicable to the heterogeneous structure. In particular, the communication requirements 
are the same for both structures, so the terms containing C do not change.11 The only 
difference between the two structures is that the heterogeneous (n, m) structure requires less 
execution time than the corresponding homogeneous (n, 0) structure. Thus, Equation 10 
can be modified slightly to obtain bounds for the heterogeneous synchronous structure. 

£(synchn)J + 2pC < E{X) < £(synchn)J + (n + l)pC, (11) 

where i?(synchnm) represents the expected execution time for the heterogeneous structure 
with communication that was determined in Section 4. In the next section, simulation results 
will be used to examine the usefulness of these bounds. 

Nearest-Neighbor Structure 

Consider Figure 3, which shows a Gantt chart for the execution of tasks from the het- 
erogeneous nearest-neighbor structure (Figure lb). In this case, neighbor processors must 
communicate with each other to assure that both have completed the current iteration before 
proceeding to the next iteration. Notice that this communication could be synchronous, in 
which both must be done with computation before any exchange can occur, or asynchronous, 
in which the send and receive operations each take one communication unit of time. The 
overall effect is that synchronization between neighbors requires two communication units. 
Thus, a processor synchronizing with two other processors spends four communication units 
before proceeding to the next iteration. It should be noted that it is assumed that commu- 
nication between different pairs of processors may occur simultaneously. 

11 Notice that we assume that communication times for the "faster" processors are the same as those for 
the "slower" processors. Faster computation does not always result in proportionally-faster communication. 
Similarly, differences in task times do not necessarily cause differences in communication times. 

11 
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Figure 3: Gantt Chart for Nearest-Neighbor Structure with Heterogeneous Tasks 

For the homogeneous nearest-neighbor structure in which each processor has one or two 
neighbors, the expected execution time E(X) was shown in [7] to be bounded by 

£(nn) + 2pC< E(X) < £(nn) + C{2n + 6(p- 1)), (12) 

where E(nn) is the expected execution time without communication that was determined by 
simulation. For the heterogeneous structure, the communication requirements are the same 
as those for the homogeneous structure. Thus, it is reasonable to assume that the bounds in 
Equation 12 still hold when E{X) represents the heterogeneous execution time and £(nn) is 
replaced by £(nnn,m). Simulated execution times will be compared to these bounds in the 

next section. 

Asynchronous Master-Slave Structure 

It was fairly straightforward to determine bounds for the synchronous and nearest-neighbor 
structures because each processor completed the same number of tasks. With the asyn- 
chronous master-slave structure, processors can receive different amounts of work, so the 
analysis is more complicated. 

Consider Figure 4, which shows a Gantt chart for the execution of slave tasks in the het- 
erogeneous asynchronous master-slave structure on four processors.12 Like the synchronous 
and nearest-neighbor structures, the initial tasks in the asynchronous master-slave structure 
are staggered since communication from the master is required. Communication from the 
slave to the master and from the master to the slave is required between each iteration. 
Since the master can communicate with one slave at a time, there may be delays as slaves 
wait to be serviced by the master object. Notice in Figure 4 that some processors complete 
more tasks than other processors. Because there is no synchronization between slave tasks, 
the master processor can "deal out" work to any processor that is idle. 

In [7], we developed the following bounds for the expected execution time E(X) of the 
homogeneous asynchronous master-slave structure: 

£(asynch) + 2pC < E{X) < £(asynch') + 2n'p'C, (13) 

12Notice that Figure 4 shows only slave tasks and communication and does not indicate work by the master. 
Although it is not realistic to ignore the effects of the master's work and communication on performance, 
this approach can provide a lower bound on the structure's execution time. 
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= Computation = Communication 

Figure 4: Gantt Chart for Asynchronous Master-Slave Structure with Heterogeneous Tasks 

where E(asynch) is the expected execution time of the asynchronous structure (based on 
synchronization alone) with n processors and p iterations and l?(asynch') is the corresponding 
time with n' = n - 1 processors and p' = [^   iterations per processor. 

Equation 13 was developed by considering the minimum and maximum execution times 
of the slave processors and the master under the assumption that any task could be executed 
on any processor. If the number of processors n or the communication unit C is large, the 
execution time will be dominated by the master's communication with the slave processors. 
In this case, the master may have little time for executing ordinary tasks since most of its 
time will be spent servicing the slaves. At the other extreme, the master processor will spend 
less time on communication and can process tasks along with the slave processors. 

To determine bounds for the heterogeneous asynchronous master-slave structure, we need 
to consider how the shorter task times will affect the overall execution time. In the worst case, 
communication will dominate the execution time, and the shorter task execution times will 
have little or no effect in reducing the overall time. Thus, the upper bound in Equation 13 
for the homogeneous case will still serve as an upper bound for the heterogeneous structure.13 

In the best case, computation will dominate the overall execution time, so the shorter task 
times will have an effect on the lower bound. 

To compute the lower bound for the heterogeneous case, we need to determine the optimal 
distribution of work. Recall that the heterogeneous (n, m) structure will have task execution 
times following one distribution (such as tt(0,1)) on n—m processors and a scaled distribution 
(such as u(0, a)) on the other m processors. If the np tasks are "equally" distributed among 
the processors according to processor speed, 

(n - m)x + my = np, (14) 

where x is the number of tasks assigned to each slower processor and y is the number of 
tasks assigned to each faster processor. 

Next, we must account for the minimal time spent on communication. Ideally, the 
processors will all start and stop computation at the same time. Suppose that the structure 
contains tasks from the u(0,1) and w(0, a) distributions. Given that each task requires two 

13The results from Section 4.3 indicate that there is little or no difference between E(asynch') and 
E{asynch'n m). We will use E(asynch') since it can be computed using the normal approximation [7]. 
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units of computation (one to receive the task and one to return the result), the execution 
times for the processors will be identical if 

-a+«)-.(i+*). (15) 

where \ and § are the expected values for the u(0,1) and u(0, o) distributions, respectively. 
Observe that Equation 15 assumes that processors are never idle. 

Equations 14 and 15 form a set of simultaneous equations that can be solved to find the 

optimal values for x and y. 

x 
np — my 
n — m 

y 

np 
n — m 

+ 2C 

öG+-)+M 
(16) 

Notice that the ceiling function is used to obtain integer values for x and y.  As a result, 
Equation 15 may not be an exact equality, so the lower bound is given by 

E(X) > max \x Q + 2c) , y (| + 2c) (17) 

5.2    Discussion of Results 

To examine the behavior of (n, m) heterogeneous structures with non-zero communication 
times, simulation was used to obtain expected execution times for the synchronous, nearest- 
neighbor, and asynchronous master-slave structures. In particular, constant communication 
times ranging from 0.025 to 0.25 were used with execution times distributed according to 
the normal n(±, £) and n(f,g) distributions.14 Each structure contained lOOOn tasks, 
and expected values were obtained by averaging the execution times of 10,000 simulated 

executions. 
Table 3 presents simulation results for the synchronous structure. As expected, the 

execution times for the (n, m) structure fall between those for the (n - m, 0) and (n, 0) 
structures. In particular, observe that there is a noticeable difference between the execution 
times for (n, m) and (n, 0), even when the communication times are large. It is significant that 
the benefit from reducing computation times on m processors is not completely outweighed by 
the communication, even though the (n, m) structure requires just as much communication 
as the (n, 0) structure. 

Table 4 presents simulation results for the nearest-neighbor structure. When communi- 
cation times are small or the number of processors is large, there is a noticeable difference 
between the times for (n,m) and (n,0). Thus, there is some benefit in allocating work to 
m faster processors. When communication times are large and the number of processors 
is small, the benefit disappears because the large amount of communication negates the 
reduced computation times. 

14In this section, only results for the normal distributions will be presented.   Results for the uniform 
distributions, which were similar to those of the normal distributions, are given in Appendix A. 
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Table 3: Simulation Results for Expected Execution Times of Heterogeneous Syn- 
chronous Structure with Tasks from n(|, ^) and n(f, fj) Distributions and 
Constant Communication Times 

a 
Comm. 
TimeC 

(n,m)a 

(3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 
2 

.025 837 864 916 936 977 1016 1106 1191 1343 

.05 929 982 1036 1075 1119 1203 1310 1549 1726 

.10 1118 1220 1277 1358 1408 1610 1741 2418 2567 

.15 1311 1463 1521 1650 1705 2066 2199 3321 3449 

.20 1508 1710 1769 1953 2009 2550 2671 4224 4344 

.25 1709 1961 2020 2265 2316 3040 3147 5125 5242 

4 
5 

.025 837 884 916 950 977 1047 1106 1244 1343 

.05 929 1003 1036 1091 1119 1243 1310 1620 1726 

.10 1118 1242 1277 1378 1408 1667 1741 2479 2567 

.15 1311 1486 1521 1673 1705 2127 2199 3372 3449 

.20 1508 1733 1769 1977 2009 2605 2671 4273 4344 

.25 1709 1984 2020 2287 2316 3088 3147 5172 5242 

aThe notation (n:m) refers to a structure of width n in which n—m tasks are n(|, j^) and m 
2 

tasks are n(|, f^), 0 < a < 1. 

Table 4: Simulation Results for Expected Execution Times of Heterogeneous Nearest- 
Neighbor Structure with Tasks from n(|, ^) and n(§, f^) Distributions and 
Constant Communication Times 

a 
Comm. 
TimeC 

{n,m 

(3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 
2 

.025 781 795 816 824 836 841 865 868 890 

.05 852 879 894 911 918 929 951 956 976 

.10 1005 1063 1069 1100 1103 1122 1143 1150 1169 

.15 1173 1258 1260 1302 1303 1330 1355 1364 1386 

.20 1349 1456 1458 1509 1510 1543 1576 1587 1616 

.25 1532 1657 1658 1716 1717 1754 1792 1805 1843 

4 
5 

.025 781 800 816 826 836 844 865 869 890 
.05 852 882 894 912 918 932 951 957 976 
.10 1005 1063 1069 1100 1103 1125 1143 1151 1169 

.15 1173 1256 1260 1302 1303 1337 1355 1367 1386 

.20 1349 1455 1458 1509 1510 1553 1576 1591 1616 

.25 1532 1656 1658 1716 1717 1765 1792 1811 1843 
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Table 5: Simulation Results for Expected Execution Times of HeterogeneouS2 Asyn- 
chronous Master-Slave Structure with Tasks from n{\, ^) and n(§, fg) Dis- 
tributions and Constant Communication Times 

a 
Comm. 
Time C 

(n,m 

(3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 
2 

.025 589 512 596 540 602 516 619 800 800 

.05 686 640 707 687 728 803 834 1599 1600 

.10 904 935 972 1052 1061 1600 1600 3199 3199 

.15 1142 1264 1279 1503 1503 2399 2400 4798 4799 

.20 1391 1620 1623 2000 2000 3199 3199 6396 6397 

.25 1646 2002 2003 2499 2500 3999 3999 7997 7997 

4 

5 

.025 589 571 596 584 602 585 619 800 800 

.05 686 687 707 716 728 820 834 1599 1600 

.10 905 965 977 1067 1070 1600 1600 3198 3199 

.15 1142 1275 1279 1503 1503 2400 2400 4798 4799 

.20 1391 1622 1623 2000 2000 3199 3199 6396 6397 

.25 1646 2003 2003 2499 2500 3999 3999 7997 7997 

Table 5 presents simulation results for the asynchronous master-slave structure. Notice 
the bold-faced entries in Table 5, which identify (n, m) execution times that were less than the 
times for the corresponding (n-m,0) and (n,0) structures. These entries indicate that the 
heterogeneous asynchronous master-slave structure can significantly improve performance 
over both the (n-ra, 0) and (n, 0) structures when communication times are very small. As 
communication times get large, communication with the master dominates the execution 
time and the (n,m) times quickly approach the (n,0) times. Thus, the communication 
outweighs any benefit from faster computation. 

Figures 5 through 10 demonstrate the bounds obtained in Section 5.1 by comparing them 
with simulated execution times for the synchronous, nearest-neighbor, and asynchronous 
master-slave structures. Figures 5 through 7 present results for the (8,3) structure while 
Figures 8 through 10 present similar results for the (16,8) structure. Notice that the syn- 
chronous and asynchronous master-slave structures closely follow the upper bound, while the 
execution time for the nearest-neighbor structure falls right between the upper and lower 
bounds. Results for other values of n and m followed the same patterns. 
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Figure 5: Comparison of Simulated (8,3) Synchronous Structure 
with Upper and Lower Bounds 
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Figure 6: Comparison of Simulated (8,3) Nearest-Neighbor Structure 
with Upper and Lower Bounds 
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Figure 7: Comparison of Simulated (8,3) Asynchronous Master-Slave 
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Figure 8: Comparison of Simulated (16,8) Synchronous Structure 
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Figure 9: Comparison of Simulated (16,8) Nearest-Neighbor Structure 
with Upper and Lower Bounds 
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Figure 10: Comparison of Simulated (16,8) Asynchronous Master-Slave 
Structure with Upper and Lower Bounds 
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6    Conclusions 

• Heterogeneous algorithmic structures can be used to model problems containing tasks 
with execution times from different probability distributions. 

• Ignoring communication times, the expected execution time for a heterogeneous (n, m) 
structure is roughly the same as that for the corresponding homogeneous (n - m, 0) 
structure. 

• When non-zero communication times are considered, the heterogeneous (n, m) struc- 
ture will require as much communication as the homogeneous (n, 0) structure. 

• The heterogeneous (n, m) synchronous structure will generally be faster than the cor- 
responding (n, 0) structure, even when communication times are large. 

• When communication times are small, the heterogeneous nearest-neighbor structure is 
slightly faster than the homogeneous structure. When communication times are large, 
the execution times are the same, so there is no benefit in using a mixture of slower 
and faster processors. 

• The (n, m) asynchronous master-slave structure can gain significant performance over 
the (n — m, 0) and (n, 0) structures when communication times are very small. The 
benefit of the (n, m) structure over the (n, 0) structure decreases as communication 
times increase, until there is no benefit at all. 

• The theoretical bounds developed in Section 5.1 can be used to predict the expected 
execution times for heterogeneous algorithmic structures with known task distributions. 
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A    Results for the Uniform Distribution 

Tables 6 through 8 present results for the uniform distribution that are comparable to the 
results for the normal distribution given in Tables 3 through 5. Notice that the results 
for the two distributions are very similar. Correspondingly, the bounds for execution times 
are practically identical for the two distributions, and the graphs in Figures 5 through 10 
represent both the uniform and normal distributions. 

Table 6: Simulation Results for Expected Execution Times of Heterogeneous Syn- 
chronous Structure with Tasks from w(0,1) and tt(0, a) Distributions and 
Constant Communication Times 

a 
Comm. 
TimeC 

(n,m)a 

(3,0) (4,D (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 
2 

.025 842 871 919 939 974 1014 1086 1178 1298 

.05 935 988 1039 1078 1117 1202 1293 1546 1699 

.10 1123 1226 1280 1361 1407 1608 1729 2422 2548 

.15 1315 1468 1524 1651 1703 2066 2186 3319 3427 

.20 1512 1714 1772 1953 2006 2551 2658 4219 4317 

.25 1712 1965 2022 2266 2314 3042 3134 5118 5209 

4 
5 

.025 842 889 919 950 1014 1034 1086 1208 1298 

.05 935 1007 1039 1091 1117 1231 1293 1605 1699 

.10 1123 1247 1280 1378 1407 1658 1729 2469 2548 

.15 1315 1489 1524 1674 1703 2118 2186 3358 3427 

.20 1512 1736 1772 1978 2006 2597 2658 4254 4317 

.25 1712 1987 2022 2288 2314 3080 3134 5149 5209 

aThe notation (n,m) refers to a structure of width n in which n-m tasks are u(0,1) and m tasks 
are u(0,a), 0 < o < 1. 
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Table 7: Simulation Results for Expected Execution Times of Heterogeneous Nearest- 
Neighbor Structure with Tasks from w(0,1) and u(0, a) Distributions and 
Constant Communication Times 

a 
Comm. 
Time C 

{n,m ) 
(3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 
2 

.025 786 800 820 828 839 844 865 868 886 
.05 856 884 898 914 921 932 952 956 974 
.10 1008 1067 1073 1103 1105 1124 1144 1151 1168 
.15 1174 1262 1264 1306 1306 1332 1356 1365 1385 
.20 1349 1461 1461 1513 1513 1546 1578 1588 1617 
.25 1531 1662 1661 1721 1722 1758 1796 1808 1845 

4 

5 

.025 786 805 820 830 839 846 865 868 886 
.05 856 886 898 915 921 934 952 957 974 
.10 1008 1066 1073 1102 1105 1127 1144 1151 1168 
.15 1174 1260 1264 1304 1306 1338 1356 1367 1385 
.20 1349 1459 1461 1512 1513 1556 1578 1593 1617 
.25 1531 1660 1661 1721 1722 1770 1796 1813 1845 

Table 8: Simulation Results for Expected Execution Times of Heterogeneous Asyn- 
chronous Master-Slave Structure with Tasks from w(0,1) and w(0, a) Distri- 
butions and Constant Communication Times 

a 
Comm. 
TimeC 

{n,m 
(3,0) (4,1) (4,0) (5,1) (5,0) (8,3) (8,0) (16,8) (16,0) 

1 
2 

.025 589 513 596 540 602 519 622 800 803 
.05 687 641 709 689 731 809 843 1599 1600 
.10 905 938 977 1059 1070 1600 1600 3199 3199 
.15 1144 1279 1288 1505 1505 2400 2400 4798 4798 
.20 1396 1626 1629 2000 2000 3199 3199 6396 6397 
.25 1658 2000 2000 2500 2500 3999 3999 7997 7997 

4 
5 

.025 589 571 596 584 602 588 622 800 803 
.05 687 689 709 719 731 828 843 1599 1600 
.10 905 965 977 1067 1070 1600 1600 3198 3199 
.15 1144 1283 1288 1505 1505 2400 2400 4798 4798 
.20 1396 1628 1629 2000 2000 3199 3199 6396 6397 
.25 1658 2000 2000 2499 2500 3999 3999 7997 7997 
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